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Abstract 
 

First principles calculations of the second and third order elastic constants of the cubic silicon carbide β-
SiC have been accomplished using the density functional theory within the local density approximation 
and the pseudopotential plane-wave method with the Hartwigsen Goedecker Hutter scheme. The second 
order elastic constants Cij compared fairly well with those previously measured by one of us using the 
Brillouin light scattering technique (P. Djemia) [1]. The ab-initio calculations include parameters 
pressure dependence determinations in relation with the structural transformation from a zinc Blende to 
a rocksalt structure. The transition pressure at which arises elastic instabilities is found to be Pt = 113 
GPa. Also, we investigate the effects of anharmonicity by calculating the third order elastic constants 
Cijk. The experimental values are still unknown and comparisons with our calculations are suitable in the 
future. 
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1. Introduction 
It is well known that there are a large number of polytypes for the SiC crystal whose 

properties are different for each polytype. Over the last decade, there has been growing interest in the 
only polytype with a cubic structure 3C-SiC (-SiC) as a MEMS material. Unlike 6H-SiC, the 3C 
polytype can be epitaxially grown on single-crystal silicon substrates. At CWRU, the first successful 
depositions of spatially uniform, single-crystal, 3C-SiC films on 4-inch (100) silicon wafers were 
made possible. Some of its structural and mechanical properties have been investigated by various 
techniques [1,3] and will provide us some comparisons with our ab-initio calculations. 

In this work, we do first-principle calculations of the second order and third order elastic 
constants for the silicon carbide zinc blende polytype -SiC. We compare our numerical results with 
our experimental available ones [1] and we give prediction for third order elastic constants and 
pressure dependence of second order elastic constants until the structural transformation from a zinc 
Blende to a rocksalt structure takes place.  

The paper is organized as follows: the computational method is described in section 2. In 
sections 3 and 4 the results of the calculations of structural and elastic properties are respectively 
presented and compared with available experimental and theoretical data. In section 5 and 6 the results 
of the calculations with hydrostatic pressure and of the third order elastic constants are respectively 
presented. A conclusion is given in section 7. 

 
2. Computational Method 
The calculations were performed within the local density approximation LDA to the density-functional 
theory DFT [4,5], using the pseudopotential plan-wave method as implemented in the ABINIT code 
[6]. We have used the Teter and Pade parameterization [7] for LDA. Only the outermost electrons of 
each atom were explicitly considered in the calculation. The effect of the inner electrons and the 
nucleus (the frozen core) was described within a pseudopotential scheme. We used the Hartwigsen-
Goedecker-Hutter scheme [8] to generate the norm-conserving nonlocal pseudopotentials, which 
results in highly transferable and optimally smooth pseudopotentials. A plane-wave basis set was used 
to solve the Kohn-Sham equations in the pseudopotential implementation of the DFT-LDA. 
The Brillouin zone integrations were replaced by discrete summations over a special set of k-points 
using the standard k-point technique of Monkhorst and Pack [9] where the k-point mesh used is (8 X 8 
X 8). The plane –wave energy cutoff to expand the wave functions is set to be 90 Hartree (1 Hartree = 
27.211396 eV). 
 
3. Structural Properties 
The minimization of the total energy with respect to the unit cell volume allows us to obtain the 
equilibrium structural properties of -SiC. The equilibrium lattice parameter and the bulk modulus can 
be determined by fitting the total energies calculated at several lattice constants to the Murnaghan’s 
equation of state [10] : 
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where, at zero pressure, B0 is the bulk modulus, V0 is the unit-cell volume, E(V0) energy at the cell 

volume and PBB '
0 . Note that another method to compute the equilibrium lattice parameter is 

the structural optimization using the Broyden-Fletcher-Goldfarb-Shanno minimization (BFGS) [11]. 

In Table 1, we show the lattice parameter a0 along with the values of 0B  and '
0B ; experimental [1,12] 

and previous theoretical calculations [13,14] are also displayed. We observed that the values of the 
lattice parameter calculated from the BFGS tool are in good agreement with the ones obtained from 
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the fits to Murnaghan’s equation of the total energies. Moreover, a0 of SiC agrees quite well with 
experimental [12] and theoretical [13,14] values. 
 
Table 1. Lattice constant, bulk modulus, elastic constants and their derivative and phase transformation pressure 
for -SiC in comparison with experimental [1,12] and other theoretical [13,14] values.  
a fit to Murnaghan’s equation, b BFGS and c from B= (C11+2 C12)/3. 
 
 Our data Expt Calc. 
a (A°) 4.3355a 

4.331b 
4.3596 [12] 4.3397 [13] 

4.36[14] 
B0 (Gpa) 218a 

228c 
225 [12] 
219 [1] 

218 [13] 
210a, 216c [14] 

B0’ 3.599  3.71 [14] 

 

4. Elastic Properties 
In a cubic lattice, three independent elastic constants C11 , C12 and C44 are determined by employing 
suitable lattice distortions. Following the work of Nielsen and Martin [15], we determine these 
constants. C11 and C12 can be found from the stress-strain relation with the application of an 1 strain. 
This strain scales the x dimensions by (1+1) while maintaining constant the y and z dimensions. For 
small strain the harmonic approximation defines the relations : 
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Where i with  2,1i  represent the stress.  
From the following stress-strain relation [15], one can obtain the elastic constant C44. 
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In Eq. (5), C°44 denotes the elastic constant in absence of internal displacements u ,  is the volume of 
the unstrained unit cell,  is the force constant and  is the internal strain parameter. We can 
determine C44 and  with two independent calculations: setting 4=0 and a small relative displacement 
u then with small 4 and u=0; details about this method can be found in ref. [15]. The calculations were 
performed with 004.01   in the direction (100) to determine C11 and C12 and with 004.04 
and 03002.0 au   in the direction (111) to find C44,  and the optical Γ-phonon frequency ωΓ. Ф is 

the constant force that raise from our results of phonon frequencies and is equal to 
 

2       (6) 

 
Where μ is the reduced mass. 
In Table 2, we show the elastics constants calculated compared with experimental [1,12,16] and 
previous theoretical calculations [13,14]. The second order elastic constants Cij compared fairly well 
with those previously measured by one of us using the Brillouin light scattering technique (P. Djemia) 
[1].  
 
For cubic systems, the bulk modulus B can be expressed as a linear combination of the two elastic 
constants C11 and C12: 
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The bulk modulus B obtained from Eq. (7) is in reasonable agreement with the values computed by 
total energy fitting to Murnaghan’s equation (1) found earlier (see table 1). 
 
Table 2. Elastic constants and their derivative and phase transformation pressure for -SiC in comparison with 
experimental [12,1,16] and other theoretical [13,14] values.  
 

 Our data Expt Calc. 
C11 402.3 (LDA) 

 
390 [12] 
395±12 [1] 

385 [13] 
384 [14] 

C12 141.1 (LDA) 
 

142 [12] 
132±9 [1] 

135 [13] 
132 [14] 

(C11-C12)/2 130.5 (LDA) 
 

136±8 [1]  

C44 253.4 (LDA) 
 

256 [12] 
236±7 [1] 

257 [13] 
241[[14] 

(C11+C12+2C44)/2 525.1 (LDA) 
 

504±15 [1]  

𝜉 0.413  0.41 [13] 
dC11/dp 3.12  3.49 [13] 
dC12/dp 3.4  4.06 [13] 
dC44/dp 1.32  1.58 [13] 
dC0

44/dp 2.75  3.65 [13] 
Pt(Gpa) 113.5 100 [16] 65 [14] 
VT/V0 0.748 0.757 [16] 0.817 [14] 

 
 
5. Pressure Effect On Elastic Properties  

We have calculated the three elastic coefficients C11, C12 and C44 of -SiC from the stress-
strain relations up to 100 Gpa to study the elastic instability. Both C11 and C12 increase monotonously 
with increasing pressure values with a linearly variation for pressure less than 80 GPa, as is shown in 
fig. 1. On other hand, the variation of C44 with the pressure is non-linear one (see figure 1). Analytical 
relations for the pressure dependence of these elastic constants are given by the quadratic fit below. 
 

C11 = 408.4+3.44p-0.00365p 2     (8-a) 
C12 = 143.8+3.57p -0.00196p 2     (8-b) 
C44 = 260.71+1.321p -0.0052p 2     (8-c) 

  
For a cubic crystal under pressure p, the generalized elastic stability criteria [17,18] are: 
 

    𝐾 =
ଵ

ଷ
(𝐶ଵଵ + 2𝐶ଵଶ + 𝑝) ≻ 0     (9-a) 

     𝐺ᇱ = 𝐶ସସ − 𝑝 ≻ 0     (9-b) 

    𝐺 =
ଵ

ଶ
(𝐶ଵଵ − 𝐶ଵଶ − 2𝑝) ≻ 0     (9-c) 

 
For zero pressure, we find the well-known Born elastic stability criteria [19]. 
When pressure is applied, SiC transform from zinc-blend phase into rocksalt. We find that G decreases 
gradually with pressure and vanishes at about 113 GPa and G’ decreases also to zero but at higher 
pressure, as it is shown in fig. 2. Therefore, the phase transition occurs for -SiC at the much higher 
pressure at which G becomes zero (Pt=113 GPa). The zinc-blend structure becomes unstable at a 
volume reduction VT/V0≈0.748. Where V0 is the volume at equilibrium and VT the volume at phase 
transition.  
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Figure 1. Pressure dependence of the elastic constants for β-SiC. ■ our data, ── fit. 

 
 
 

 
 

Figure 2. The pressure variation of G, G’ and K for β-SiC. 
 
 
 
 
6. Third Order Elastic Constants 
Higher-order elastic constants provide an efficient measure of many aspects of lattice anharmonicity. 
In particular, the third order elastic constants are useful in the calculations of many mechanical and 
thermal properties related to the anharmonic nature of the lattice potential energy. In addition the third 
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order elastic constants would be expected to provide useful new information on the nature of cohesive 
properties and inter atomic forces, so why this constants have received an enormous attention for 
many materials. 
Lattice dynamical models used to model anharmonic properties typically use large numbers of fitting 
parameters. In contrast, ab-initio methods are inherently free from fitting parameters, thus they usually 
increase physical insight. 
In this part second and third order elastic constants are calculated from the energy variation by 
applying a strain to the equilibrium lattice configuration. The change in total internal energy per unit 
of undistorted volume V0 in response to an applied stress is given by: 
 

......
6

1

2

1

0
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kjiijkjiij eeeCeeC
V

E
    (10) 

 

Where E  is the energy increment by the strain vector  654321 ,,,,, eeeeeee  and ijC , ijkC are the 

matrix of second and third order elastic constants respectively. 
For cubic materials, in addition to the three independent ijC , symmetry dictate six independent ijkC

 456166144123112111 ,,,,, CCCCCC . This constants were computed using six distortion type labeled I, 

II, III, IV, V and VI using six component strain notation, distortion I-VI respectively correspond to: 

uniform dilatation   0, 654321  eeeeee ; both of  [100] and [010] strain 

 0, 654321  eeeeee ; distortion at inverse eight  0, 654321  eeeeee , here 

the phrase constant height refers to constant height of the f.c.c. unit cell ; uniform distortion along 

[111]  654321 eeeeee  ; [111] shear strain  654321 ,0 eeeeee  and finally 

 0, 653241  eeeeee  strain. 

For the six distortions employed in this study, strain component relate as scalar multiples, adding 
subscript D to denote the type of distortion while using the above definition of strains I-VI yields the 
following relationship: 
 

       3
1

2
1

0 6

1

2
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egek

V

E
DD
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    (11) 

 
where: 
 

1211 63 CCk I                      (12-a) 

1211 22 CCk II                      (12-b) 

1211 23 CCk III                      (12-c) 

441211 363 CCCk IV                     (12-d) 

443CkV                       (12-e) 

4411 CCkVI            (12-f) 

 

123112111 6183 CCCg I                     (13-a) 

112111 62 CCg II                      (13-b) 

123112111 66 CCCg III                     (13-c) 

456166144123112111 61896183 CCCCCCg IV                 (13-d) 

4566CgV                       (13-e) 

144111 3CCgVI                       (13-f) 
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 VIIIIigk ii ,.....,,   are second order force constants and third order force constants respectively. 

As is seen from equations (12-a) to (13-f) it is possible to derive the three ijC  and the six ijkC from 

calculation using the sets of strains chosen. 

In the present work, 50 sets of 
0V

E
 for each distortion are obtained from PW-PP calculation by 

varying the appropriate strains from about -0.5 to about +0.3. The second and third order elastic 
constants are then obtained from a cubic polynomial fitting of energy strains relation. We have 
included the following points : all points for distortion type I, II, III;IV for strain type V, -0.002≤ e1 

≤0.5; and for strain type VI, -0.1≤ e1 ≤ 0.1. The calculated ik   and ig  are fitted simultaneously and 

listed in table II with the corresponding third order elastic constants for the -SiC. The combination of 
Cij derived from the second order terms are also given in table 3. 
Third order elastic constants calculated using the Keating model by Davydov [20] are shown in Table 
3. Other second order elastic constants (C11 = 410.5 GPa, C12 = 164 GPa, C44 = 194 GPa) [21] larger 
than ours were used for his calculations that may explained the large discrepancy between his results 
and our calculation of Cijk.  
 
 
Table 3. Calculated second and third-order force constants and the third order elastic constants in units of GPa of 

β-SiC. 
a calculated using Eqs (12-a)-(12-f) and the ijC  calculated previously. 

b calculated using Eqs (12-a)-(12-f) and the measured ijC  reported in table I. 
c From Davydov  [20] using Keating model and other Cij [21] as input parameters. 

 
 This study      Measured values 
KI 

KII 

KIII 

KIV 

KV 

KVI 

 
gI 

gII 

gIII 

gIV 

gV 

gVI 

 
C111 

C112 

C123 

C144 

C166 

C456 

1950.54                          2053.5a 

1041.66                          1086.8a 

915.28                            924.7a 

2748.78                          2813.7a 

813.58                            760.2a 

661.16                            655.7a 

 
 -17051.17 
-6345 
-6514.92 
 -44391.48 
 -3159.72 
 -1268 
 
 +453.5                               -1680c 
-906.33                             -1026 c 
+255.08                             -371c 
 -573.83                                3c 
 -1056.46                           -621c 
-526.62                             -69.5c 

1977±20b 

1054±20b 

921±20b 

  2685±28b 

708±21b 

631±19b 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Because of the lack in experimental and theoretical value of third order elastic properties of -SiC, no 
satisfactory comparison has been made, so why we have calculated the non-linear elastic properties of 
diamond which are known in order to check the consistency of our calculations. The calculated second 
and third order force constants are reported in table 4 and show good agreement with known 
calculated or measured values.  

 
 

TABLE 4. Calculated second and third-order force constants and in units of GPa of the diamond. 
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a calculated using Eqs. (12-a)-(12-f) and the measured ijC  reported in ref [22]. 

b calculated using Eqs.  (12-a)-(12-f) and the ijC  reported in ref. [23] 

c calculated using Eqs. (12-a)-(12-f) and the ijC  reported in ref [24]. 

d calculated using Eqs.  (13-a)-(13-f) and the ijkC  reported in ref. [23] 
 This study Measured values     ref. [23]      ref. [24]  

KI 

KII 

KIII 

KIV 

KV 

KVI 

 
gI 

gII 

gIII 

gIV 

gV 

gVI 

4052 
2418 
2975 

     5763 
     1740 
     1648.24 
 
    -32982,66 
    -14905,56 
    -12016,56 
    -86882,52 
    -6201,18 
     -3578.7 

3993a 

2412a 

2993a 

5730a 

1737a 

1660a 

 

 

3912b 

2354b 

2896b 

5562b 

1650b 

1600b 

 
-33300d 

-17400d 

-11100d 

-87900d 

-7800d 

-6300d 

3897c 

2342c 

2873c 

5499c 

1602c 

1577c 

 
-54309 

 
 
 

 

 
The six second order force constants of diamond calculated using Eq. (12-a) to (12-f) and measured 

ijC  agree well with our results to within 2 %, also our six third order force constants are in good 

agreement with the one calculated using Eq. (13-a) to (13-f) and the ab-initio  reported in ref [23]. 

The procedure applied in the case of diamond has been employed for the -SiC, but in view of the 
limited experimental and theoretical value no valuable comparison has been made and we suggest that 
the Cij and Cijk in table II are predictions to be verified by future experiments. 
 
7. Summary And Conclusions 
We have performed high pressure ab-initio calculations of the elastic properties for the zinc blende 
polytype of silicon carbide -SiC. the results obtained of the elastic constants (C11, C12, and C44),are in 
good agreement with the available experimental and theoretical data reported in the literature. 
The pressure at which the transition from zinc-blende to Rocksalt structure should arise is found to be 

113 GPa and is associated to the elastic instability  11 12 2 0C C p   . Our results predict the 

pressure dependence of the three independent elastic constants (C11, C12, C44) for -SiC that still have 
not been experimentally derived.  
Also, we investigate the effects of anharmonicity by calculating the third order elastic constants Cijk. 
Because of the lack in experimental and theoretical value of third order elastic properties no comparison 
has been made. Then, further experiments are suitable. 

ijkC



  Lebga et al. / J. Phys. & Chem. Res. 1, Issue 2, December  (2022) 16–24 

 

24 
 

References: 
[1] P. Djemia, Y. Roussigné, G. F. Dirras, K. M. Jackson.  J. Appl. Phys. 95 (2) (2004) 2324-2330. 
[2] P. Masri, , N. Moureaud, M. Rouhani Laridjani, J. Calas, M. Averous, G. Chaix, A. Dollet, R. Berjoan, C. 
Dupuy, Materials Science and Engineering B, 61-62, (1999), 535-538 
[3] K. M. Jackson, Sensors and Actuators A, 125, (2005),  34-40. 
[4] P. Hohenberg, W. Kohn, (1964), Phy Rev. B, 136, 864  
[5] W. Kohn, L. J. Sham, Phy Rev. A, 140, (1965), 1133  
[6] The ABINIT computer code is a common project of the Universite Catholique de Louvain, Corning 
Incorporated, and other contributors. (URL http: //www.abinit.org) 
[7] Teter Pade fitting of PW92 data: see the appendix of S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B, 
(1996), 54, 1703; J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, (1996),  3865  
[8] C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58 (1998) 3641  
[9] H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 13, (1976),  5189  
[10] F D. Murnaghan, Proc, Natl Acad, Sci, USA, 30, (1944), 244 
[11] C. G. Broyden, Journal of the Institute for Mathematics and Applications, Vol. 6, (1970), 222-231, R. 
Fletcher, Computer Journal, Vol. 13, (1970), 317-322. D. Goldfarb, Mathematics of Computation, Vol. 24, 
(1970), 23-26. D. F. Shanno, Mathematics of Computation, Vol. 24, (1970), 647-656. See also summary in: D. 
F. Shanno, Journal of Optimization Theory and Applications, Vol.46, No 1, (1985), 87-94.      
[12] W.R.L. Lambrecht, B. Segal, A. Methfessel, M. Schilfgaard, phys. Rev. B, 44, (1991), 3685 
[13] M. Prikhodkho, M. S. Miao, W.R.L. Lambrecht, Phys. Rev. B, 66, (2002), 125201 
[14] Cheng-Zhang Wang, Rici Yu,  Henry Krakauer, Phys. Rev. B, 53 (9), (1996), 5430- 5437 
[15] O. H. Nilssen, R. M. Martin, Phy. Rev. B, 32, (1985), 3792. 
[16] M. Yoshida, A. Onodera, M. Ueno, K. Takemura,  O. Shimomura, Phys. Rev. B 48, (1993), 10 587 
[17] Sidney Yip, J. Li, M. Tang, J. Wang, Materials Science and  Engineering A, 317, (2001), 236-240 
[18] G.V. Sinko, A. Smirnov, J. Phys. Condens. Matter, 14, (2002),  6989 
[19] M. Born and K. Huang: Dynamical Theory of Crystal Lattices, Oxford: Clarendon. 1954 
[20] S. Yu. Davydov, Physics of the Solid State, 46 (7), (2004), 1200-1205. 
[21] S. P. Nikanorov, B. K. Kardashev: Elasticity and Dislocation Inelasticity of Crystals, Nauka, Moscow. 
(1985) 
[22] H. McSkimin, P. Andreatch, P. Glynn, J. Appl. Phys., 43, (1972),  985. 
[23] O. H. Nielsen, Phys. Rev. B., 34, (1986), 5808 
[24] D.G. Clerc, H. Ledbetter, journal of Physics and Chemistry of Solids, 66 , (2005), 1589 
 


